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Abstract: Batrachochytrium dendrobatidis (Bd), an amphibian fungal pathogen, has infected >500 species and

caused extinctions or declines in >200 species worldwide. Despite over a decade of research, little is known

about its invasion biology. To better understand this, we conducted a museum specimen survey (1910–1997) of

Bd in amphibians on 11 California islands and found a pattern consistent with the emergence of Bd epizootics

on the mainland, suggesting that geographic isolation did not prevent Bd invasion. We propose that suit-

able habitat, host diversity, and human visitation overcome isolation from the mainland and play a role in Bd

invasion.
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Emerging infectious diseases are increasingly affecting

wildlife and are a major threat to global biodiversity.

Fungal infections have caused dramatic declines across

many taxa worldwide, including bats (e.g., white-nose

syndrome), soft corals, bees, oak trees, and frogs (Fisher

et al. 2012). Batrachochytrium dendrobatidis (Bd), a fungal

pathogen that causes chytridiomycosis in amphibians, is

implicated in a recent pandemic (Wake and Vredenburg

2008), infecting over 500 species (Olson et al. 2013) and

causing declines and extinctions in over 200 species globally

(Fisher et al. 2009; Skerratt et al. 2007).

Studies investigating the emergence of Bd in California

are restricted to the mainland. The earliest reported case

was from an invasive Rana catesbeiana in 1928 (Huss et al.

2013) that apparently did not result in epizootic spread and

may represent pathogen invasion followed by a fade.

However, Bd appears to have spread widely throughout the

state beginning in the late 1960s through the 1970s, a time

period which coincides with declines and extirpations of

amphibians in California (Bradford 1991; Padgett-Flohr

and Hopkins 2009; Wake and Vredenburg 2008). To date,

there are no published reports on Bd from California is-

lands. Describing the historical to present day distribution

of Bd on the islands may help understand the invasion

biology of this pathogen. Here we report the first records of
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Bd on California islands, discover a new host species for Bd,

and discuss the presence of suitable Bd habitat, host

diversity, and human visitation as possible factors that

could influence the invasion and sustained presence of Bd

on these islands and elsewhere.

We sampled 656 preserved museum specimens, with

collection dates ranging from 1910 to 1997, from five of the

Channel Islands in southern California (San Miguel, Santa

Cruz, Santa Rosa, Anacapa, and Santa Catalina) and six

islands in northern California (Año Nuevo, the Farallones,

Alcatraz, Angel, Brooks, and Yerba Buena) (Fig. 1). We did

not include three Channel Islands (Santa Barbara, San

Clemente, and San Nicolas) because amphibians do not

occur there. The amphibians sampled included Aneides

lugubris, Batrachoseps attenuatus, Batrachoseps major, Ba-

trachoseps nigriventris, Batrachoseps pacificus, and Pseudacris

regilla (Table 1). We sampled specimens using a non-de-

structive skin swab technique (Cheng et al. 2011). In cases

where more than 30 individuals were collected within a

single year, species, and island, 30 specimens were ran-

domly selected for inclusion in the study (Gray et al. 2015).

All specimens were formalin-fixed, stored in 70 % ethanol,

and archived in the permanent collection of the Museum of

Vertebrate Zoology (Berkeley, California, USA).

To minimize chances of cross contamination among

specimens stored in the same preservation jars, individuals

were rinsed with 70 % ethanol before swabbing, gloves

were changed between animals, and specimens were

swabbed in ascending chronological order of collection

date. Specimens were stroked 30 times on the ventral side

(abdomen, sides, and tail [in the case of salamanders], and

plantar side of the forelimbs and hindlimbs) with sterile,

synthetic cotton swabs (Cheng et al. 2011; Van Rooij et al.

2011, Richards-Hrdlicka 2012). Swab samples were dried,

placed in 1.5 mL tubes, and stored at 4"C. DNA was ex-

tracted using Prepman Ultra (Cheng et al. 2011) and ana-

lyzed using quantitative polymerase chain reaction (qPCR)

assays (Boyle et al. 2004) using an Applied BioSystems 7300

Real-Time PCR system. Standards of known zoospore

concentrations and negative controls were included in each

assay. Samples were processed in singlicate and considered

positive if both a sigmoidal amplification occurred and the

qPCR score was greater than zero. To calculate infection

intensity, we multiplied the qPCR score by 80 to account
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for subsampling and dilution that occurred during the

DNA extraction, resulting in a zoospore equivalents (ZE)

estimate on each specimen (Briggs et al. 2010; Vredenburg

et al. 2010).

To determine if the islands exhibited an endemic

prevalence pattern consistent with areas of known Bd en-

demism, such as Brazil (Rodriguez et al. 2014) and Illinois

(Talley et al. 2015), we calculated the power to detect a

20 % prevalence (the approximate Bd prevalence these

studies found over a 100-year period in museum speci-

mens) given our sample size. We divided our samples into

pre-1960 and post-1960 time periods to increase power and

because a previous study on the California mainland esti-

mated that Bd epizootics first occurred after 1960 (Padgett-

Flohr and Hopkins 2009). We calculated prevalence and

95 % Bayesian confidence intervals (CIs) for these time

periods. We used R version 3.1.2 (R Development Core

Team 2008; ‘pwr’ package (Champely 2015), ‘binom’

package (Dorai-Raj 2014)) for statistical calculations.

We estimated the vulnerability of the Channel Islands

to Bd invasion by combining host availability with a cli-

mate-driven, presence-only habitat suitability model

(HSM) for Bd with maximum entropy modeling software,

Maxent version 3.3.3 k (Phillips et al. 2004), following

previously described methodologies (Rödder et al. 2009;

Yap et al. 2015). Training data for the HSM included 197

Bd-positive sites within the California mainland (Vreden-

burg et al. unpublished) and six bioclimatic variables from

the Worldclim database (Hijmans et al. 2005): annual mean

temperature, maximum temperature of the warmest

month, minimum temperature of the coldest month, an-

nual precipitation, precipitation of the wettest month, and

precipitation of the driest month. We ran 100 model

simulations using cross-validation, which were then aver-

aged by Maxent to produce a probabilistic density function

of suitable Bd habitat on the Channel Islands. We weighted

the HSM with amphibian host diversity from each island to

produce a predictive model of the probability of Bd

establishment on these islands (Fig. 1b). We used ArcGIS

10.2.2 (ESRI) to produce all GIS layers. We only used the

Channel Islands (excluding Santa Barbara Island) for the

model because climate data were incomplete for the other

small California islands.

We detected Bd in 22 of the 656 specimens and on four

(Alcatraz Island, Santa Catalina Island, Santa Cruz Island,

and Santa Rosa Island) of 11 California islands (Table 1;

Fig. 1). Infected hosts included B. major, B. nigriventris, and

B. pacificus; this is the first report of Bd in B. pacificus

(Table 1). The earliest Bd positives for each island were

detected in 1973 (Santa Cruz Island), 1978 (Santa Rosa

Island), 1979 (Santa Catalina Island), and 1987 (Alcatraz

Island) (Table 1). Prevalence and Bd infection intensities

for the species and islands sampled were low. Bd prevalence

was 0 % (0–0.7 CI, N = 254, power to detect 20 % Bd

prevalence = 0.73) in samples collected before 1960 and

5.4 % (3.5–8.0 CI, N = 402, power to detect 20 % Bd

prevalence = 0.88) in samples collected after 1960. Bd

infection intensities ranged from 0.07 ZE to 1495 ZE (Ta-

ble 1). Our Bd vulnerability model shows that despite the

Channel Islands having generally low Bd habitat suitability

(<0.42, scale of 0–1), the islands with the highest relative

model predictions are the same islands where we detected

Bd-infected specimens (Fig. 1b).

Our discovery of Bd on four of 11 California islands

may be a conservative estimate. There is a chance we did

not detect all Bd-positive specimens through our singlicate

qPCR assays (Cheng et al. 2011). In addition, the museum

samples were not collected for this study’s purpose; thus,

specimens were not equally available across time and space.

However, collectively, the samples from 1910 to 1960

provide ample support that Bd was likely not present on the

islands prior to 1960. This indicates that Bd is not endemic

to the islands and likely invaded after 1960, which coincides

with the hypothesized emergence of Bd epizootics on the

mainland (Huss et al. 2013; Padgett-Flohr and Hopkins

2009; Vredenburg et al. 2013, 2010).

Several studies propose that humans play a role in the

worldwide spread of Bd (Fisher and Garner 2007; Picco and

Collins 2008; Une et al. 2008; Schloegel et al. 2012). Cali-

fornia’s islands provide insight in the extent of human

influence on the spread of Bd because the islands vary

dramatically in human visitation rate. For example, the

Farallon Islands are closed to the public, while Alcatraz

Island is a major tourist attraction that receives *1.4

million visitors per year (National Parks Conservation

Association 2010), and Santa Catalina Island has

*4000 year-round residents (U.S. Census Bureau 2010)

and >600,000 visitors per year (Catalina Island and

Chamber of Commerce Visitors Bureau 2012). The

remaining islands are National Parks where human visita-

tion is restricted. Our results suggest that human visitation

may affect Bd invasion because the two most visited islands,

Alcatraz and Santa Catalina Island, had Bd-infected animals

(Fig. 1; Table 1), though this factor is not the only factor

associated with Bd invasion. Based on our results, we

propose the presence of suitable, even non-optimal Bd

T. A. Yap et al.



habitat, host diversity, and human visitation all play a role

in the invasion and establishment of Bd on these islands.

Other factors may also influence the spread of Bd to iso-

lated islands, such as bird or rainwater dispersal (Johnson

and Speare 2003; Kolby et al. 2015). In addition, salinity

affects Bd dynamics, and these are habitats that are exposed

to high levels of salinity (Stockwell et al. 2015a, b). We

suggest that island systems present a unique framework

that could be used to elucidate the invasion biology of Bd as

well as other emerging infectious pathogens.
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